Моторизированный экипаж 1886 г. в. Готлиба Даймлера (слева) и автомобиль c мотором, патент на который был оформлен Карлом Бенцем (справа), выставлены в первом зале легендарных автомобилей в музее Mercedes-Benz.
Подавляющее большинство автомобилей сегодня имеют двигатели, которые работают на бензине или на дизельном топливе, то есть двигатели внутреннего сгорания (ДВС). Прототип такого мотора был изобретен почти 150 лет назад, в 1860 году, бельгийским механиком Этьеном Ленуаром. Но никакого применения эта неуклюжая и малоэффективная штуковина не получила. Только через 16 лет служащий из Кельна Николай%Август Отто и его партнер Евгений Ланген создали газовый 4%тактный ДВС, который был на что-то годен. На самодвижущийся экипаж этот двигатель ставить было нельзя – настолько он был громоздким и тихоходным, зато получил довольно широкое распространение в качестве стационарного силового агрегата.
Технологический прорыв произошел, когда за дело взялись технический директор завода Отто в Дойце Готлиб Даймлер и его соратник Вильгельм Майбах. 1882 год можно считать годом рождения автомобильного двигателя, хотя заработал он лишь год спустя. Уже первый двигатель Даймлера годился и для транспортного, и для стационарного применения. Работал он и на газе, и на бензине.
Как известно, уже через три года Готлиб Даймлер построил по сути дела первый мотоцикл и должным образом выправил патент на одноколейный экипаж, а еще через год – на четырехколесный. Независимо от него Карл Бенц построил свой экипаж с газовым двигателем.
Несколько позже Рудольф Дизель изобрел ДВС, который, в отличие от двигателя Отто, работал не на бензине, а на солярке. В своей конструкции Дизель с успехом использовал как раз то, чего старались избежать Отто, Даймлер и Майбах – детонацию.
Но самое занятное в этой истории то, то еще за несколько лет до изобретенных Даймлером и Бенцем автомобилей, Старом Свете и за океаном появились электромобили и экипажи с паровым двигателем, которые некоторое время доминировали на дорогах цивилизованных стран. В США, например, в 1899 году только 22% всех выпущенных механических экипажей составляли «бензиномобили», 38% – электромобили и 40% – «паромобили». Но к 1905 году положение изменилось, и автомобили с ДВС составляли уже 70% парка.
Паромобили не выдержали конкуренции из-за сравнительной сложности и громоздкости паровых двигателей, а электромобили – из%за колоссального веса аккумуляторных батарей, которых едва хватало на 30—50 км пути, в то время как обычный автомобиль на полностью заправленном баке спокойно пробегал раз в пять, а то и в десять больше.
Двухцилиндровый мотор Benz стал первым дизелем, установленным на автомобиле в 1922 году.
Как работает двигатель Отто? «Приготавливаемая» карбюратором рабочая смесь, состоящая из паров бензина, смешанных с воздухом, через открытый впускной клапан попадает в цилиндр. Клапан закрывается, поршень, перемещающийся внутри цилиндра вверх, сжимает рабочую смесь, между контактами свечи проскакивает искра, рабочая смесь взрывается, толкая поршень вниз. Поршень через кривошипно-шатунный механизм приводит в движение коленчатый вал, от которого энергия передается, минуя множество всяких механизмов, колесам. Чтобы рабочая смесь взорвалась в нужное время, необходим электрический разряд. Правда, она может взорваться и сама, если ее сжать слишком сильно, это называется «стуком» или «детонацией».
Солярка, в отличие от бензина, детонирует легко, и Рудольф Дизель придумал двигатель, в котором в цилиндр всасывается не готовая рабочая смесь, а воздух. И только когда поршень, сжав воздух, почти достигает своей верхней точки, в камеру сгорания под высоким давлением впрыскивается топливо. Искры здесь не нужно, рабочая смесь взрывается сама, а дальше все происходит как в двигателе Отто. Дизельный ДВС получился экономичнее бензинового на 20—30%, и крутящий моменту него оказался выше.
Общая беда поршневых ДВС – кривошипно-шатунный механизм, преобразующий поступательное движение поршня во вращательное движение коленвала. Этот механизм не только архаичен, но и малоэффективен. Поэтому высоколобые конструкторы уже не первый десяток лет пытаются – и небезуспешно – изобрести мотор, лишенный этого порочного звена.
Проспер Л'Оранж (1876–1939), отец современного дизеля, работал в компании Benz & Cie.
Первая удачная конструкция подобногорода – газовая турбина – была разработана еще до Второй мировой войны. Газотурбинный двигатель лишен практически всех недостатков поршневого. Он имеет больший КПД, у него нет ни клапанов, ни ГРМ, ни кривошипно-шатунного механизма, ни поршней, ни цилиндров. Только турбина (множество легких лопаток на вращающемся диске) и компрессор (опять множество лопаток на другом диске). И работать такой мотор в принципе может на любом виде жидкого или газообразного топлива – лишь бы горело.
Однако у газовой турбины есть по крайней мере два недостатка, которые ставят под большое сомнение ее установку на автомобиль. Первый – в несколько раз большая по сравнению с поршневым
ДВС скорость вращения, а второй – большая инерционность. Ну не любит турбина быстро разгоняться и быстро останавливаться. Для самолетов эти недостатки несущественны, а для автомобиля – более чем критичны.
Немецкий инженер Феликс Ванкель предложил свой вариант ДВС без кривошипно%шатунного механизма – роторно-поршневой двигатель (РПД). Клапанов, кстати, там тоже не было. Изобретение это поражало своим изяществом. Представьте себе, что внутри непростой по форме камеры по сложной траектории движется трехгранный ротор. Он постоянно разделяет камеру на рабочие зоны, в которых и происходят впуск, сжатие, рабочий ход и выпуск, при этом роль поршней выполняют три стороны ротора. Ротор соединен зубчатым колесом с эксцентриковым валом. Двигатель Ванкеля не обременен де талями, потому отличается высокой
удельной мощностью и приемистостью, к тому же РПД значительно компактней и легче поршневого ДВС. Однако конструкция двигателя Ванкеля имеет свои врожденные болезни. Сложность форм камеры и ротора делает его дорогим в производстве и недолговечным, а неполное сгорание рабочей смеси приводит к высокому расходу топлива.
Газовый 4-тактный ДВС Николая-Августа Отто и Евгения Лангена (1876 г.)
Маркетинг мирового автопрома довольно незамысловат. Каждые 3–5 лет, потребитель должен менять автомобиль, и, понятно, на более современный, усовершенствованный, – более экономичный, экологичный, мощный и простой в эксплуатации. С экологической точки зрения самый верный путь – пересадить нас всех на электромобили. Действительно, электромобиль почти не дает выброса вредных веществ. Кроме того, электродвигатель обладает высоким крутящим моментом на малых скоростях. Электромобиль требует меньше регулировок, не критичен к смазке, у него проще система охлаждения, а топливная система отсутствует вообще. Главный недостаток, который сдерживает внедрение электромобилей, – малая энергоемкость аккумуляторов. Заполненный до отказа бак малолитражки весит около 50 кг, обеспечивая запас хода более полутысячи километров. Батареи весят обычно несколько сотен кг, а пробег на полностью заряженных аккумуляторах не превышает 100–150 км, причем при движении с небольшой скоростью. Но самая большая проблема даже не в этом. Если сегодня все автомобили заменить электромобилями, им просто не хватит электроэнергии. Дело в том, что суммарная мощность двигателей мирового автопарка в несколько десятков раз превышает общую мощность всех электростанций мира.
Как известно, не так давно конструкторы ряда ведущих компаний предложили паллиатив – разместить на борту автомобиля индивидуальную электростанцию: поршневой ДВС – генератор – аккумулятор – электромотор. В городском режиме движения основную нагрузку несет электродвигатель, на трассе – ДВС, который параллельно заряжает аккумуляторы. Алгоритм работы всей системы построен так, чтобы ДВС постоянно работал в наиболее оптимальном режиме, как с точки зрения экономичности, так и с точки зрения экологии. Гибридные автомобили получают все большее признание, особенно там, где экологические нормы наиболее ужесточены.
Теоретически сгорание может быть таким чистым, что отпадет необходимость в использовании каталитических дожигателей, считает Сергей Михайлович Фролов.
Известны многочисленные попытки перевести поршневой ДВС на более чистое топливо, например на водород. Положительные стороны такого перехода очевидны. Водород имеет большую, чем бензин, теплоту сгорания – значит, мощность увеличивается, выхлоп – водяной пар, значит, с экологией будет все в порядке. И с технической точки зрения эта задача кажется вполне решаемой. В самом деле, ездят же автомобили на природном газе, почему бы им не поехать на водороде? Но, во%первых, водород исключительно летуч и крайне взрывоопасен, поэтому топливная система автомобиля должна быть полностью пересмотрена. Во-вторых, на баллоне со сжатым водородом далеко не уедешь, придется иметь дело с жидким водородом, производство которого ох как недешево. Наконец, в-третьих, чистый водород получается из воды при помощи электричества, и здесь мы столкнемся все с той же проблемой нехватки электроэнергии.
Можно, разумеется, пойти экстенсивным путем, постоянно совершенствуя поршневые ДВС, что, кстати, и делается.
Уменьшая рабочий объем и одновременно увеличивая степень сжатия бензиновых двигателей, можно добиться повышения мощности и экономичности. Но высокая степень сжатия требует применения дорогих высокооктановых бензинов. Кроме того, бесконечно увеличивать компрессию нельзя, даже самый высокооктановый бензин будет детонировать. Переобеднять рабочую смесь тоже можно до известных пределов, иначе она просто перестанет воспламеняться.
Можно увеличить число впускных и выпускных клапанов. Многоклапанному мотору легче «дышать», процесс заполнения цилиндра рабочей смесью становится более быстрым и равномерным, топливо сгорает полнее, цилиндр быстрее освобождается от продуктов сгорания. Однако число клапанов тоже не может быть велико, оптимально – четыре клапана на цилиндр, иначе ГРМ становится настолько сложным и громоздким, что игра не стоит свеч.
Современные технологии позволяют инженерам DaimlerChrysler производить исследования путем компьютерного моделирования впрыска и поджига смеси.
Другое дело – дизели. Здесь перспективы развития кажутся куда более радужными. Степень сжатия можно увеличивать, степень наддува – чем выше, тем лучше, солярка от этого будет гореть только веселее. Серийный дизельный двигатель Mercedes%Benz объемом 3 литра, который установлен, например, на E 320 CDI Bluetec, обладает мощностью 224 л.с. и крутящим моментом 540 Нм – величина, недостижимая для бензинового ДВС того же объема.
И это далеко не предел. В эпоху повального увлечения гибридными схемами, электроприводами и альтернативными источниками энергии ближайшая судьба двигателя внутреннего сгорания, казалось, предрешена. Заведующий отделом горения и взрыва Института химической физики им. Н.Н. Семенова Российской академии наук (ИХФ РАН) доктор физико%математических наук Сергей Михайлович Фролов на этот счет другого мнения. Для этого у него более чем достаточно оснований: он давно работает над моделированием процессов сгорания. Все теоретики и практики советской школы горения и взрыва – будь то бризантный снаряд или пары бензина – вышли из этого института. С 30%х гг. здесь над теорией горения газов, а по сути над новыми концепциями двигателей работали Н. Семенов, Я. Зельдович, Д. Франк%Каменецкий, А. Соколик, А. Воинов, Л. Гуссак. Отсюда вышла идея форкамерного зажигания. Известно, что при повышении мощности вам нужно увеличивать степень сжатия, и тут вы сталкиваетесь с детонацией. Чтобы детонации не было, смесь нужно сделать менее чувствительной, обеднить ее. Но здесь легко дойти до предела – смесь можно обеднить до такой степени, что ее уже нельзя зажечь искрой. Наши исследователи предложили зажигать не искрой, а продуктами горения. Свечу помещали не в цилиндр, а в предварительную камеру. Здесь поджигалась небольшая толика богатой смеси – 2%3% от ее общего количества,
и через сопло поджигала основную смесь в цилиндре. Это нашло свое практическое применение – в авиации, а затем и в автомобилях ГАЗ и ЗИЛ.
Если правильно приготовить топливо или смесь и грамотно организовать рабочий процесс в цилиндре двигателя, то сгорание будет быстрым, полным и чистым, доказывает Сергей Михайлович, таким чистым, что отпадет необходимость в использовании каталитических дожигателей. Сегодня даже инжекторный впрыск не дает однородной смеси, потому есть перспективы для теории, которая занимается улучшением газораспределения и смешения. Например, если в обычном дизеле вместо солярки использовать топливную эмульсию – солярку с «микрокаплями» воды или другой легкокипящей жидкости – можно значительно ускорить и улучшить смесеобразование в двигателе за счет вторичной фрагментации капель эмульсии, вызванной вскипанием микрокапель добавки. При этом удается убить двух зайцев: повысить полноту сгорания и значительно снизить выход сажи, окислов азота и СО2. Наука предлагает разные способы управления этим процессом.
Уменьшая рабочий объем и одновременно увеличивая степень сжатия бензиновых двигателей, можно добиться существенного повышения мощности и экономичности.
Другое направление, активно развиваемое в ИХФ РАН, – управление процессом самовоспламенения заранее приготовленных бедных топливно-воздушных смесей в двигателе нового типа с зажиганием от сжатия – гибрида карбюраторного двигателя и дизеля. Дело в том, что смеси, обедненные горючим настолько, что они не поджигаются обычной свечой, все же можно сжигать в режиме самовоспламенения при очень высоких степенях сжатия. При этом удается значительно повысить коэффициент полезного действия рабочего процесса и существенно снизитьэмиссию окислов азота и СО2.
Еще одно направление исследований – своего рода реинкарнация идеи форкамерного зажигания. В эпоху бурного развития микроэлектроники, сенсоров и микроэлектромеханических приводов появилась возможность активного управления процессом сгорания в цилиндре двигателя с помощью бортового компьютера. Речь идет о непрерывном «сканировании» камеры сгорания лазерными лучами, несущими информацию о локальном составе смеси и ее температуре, и активном вмешательстве в рабочий процесс с помощью остронаправленных микроструй продуктов сгорания, топлива или воздуха. Такое вмешательство осуществляется по специально разработанному алгоритму, призванному обеспечить устойчивое турбулентное горение смеси на бедном пределе распространения пламени с минимальной температурой горения и ультранизкой эмиссией вредных веществ.
Остаются еще возможности работы на альтернативных топливах – природном газе, этаноле, биотопливе и синтетическом топливе. Эти направления также активно развиваются в ИХФ РАН.
И все-таки что же мы обнаружим под капотом автомобиля лет через десять? Электромотор, индивидуальную ТЭС с газовой турбиной на водороде, супердизель или двухтактный двигатель нового поколения? Поживем – увидим.